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Abstract

Let p be any prime. We consider Bokstedt’s topological refinement K(Z) — T(Z) = THH(Z)
of the Dennis trace map from algebraic K-theory of the integers to topological Hochschild
homology of the integers. This trace map is shown to induce a surjection on homotopy in
degree 2p — 1, onto the first p-torsion in the target. Furthermore, Bokstedt’s map factors through
the §'-homotopy fixed points T(Z )" "of T (Z), and it is shown that the first p-torsion element in
degree 2p — 3 of the stable homotopy groups of spheres is detected in the homotopy of T(Z)"sl.
Both results are due to Bokstedt, but have remained unpublished. € 1998 Elsevier Science B.V.

1991 Math. Subj. Class.: Primary 19D55; secondary 19D10, 19D50, 55Q52

1. Introduction

The purpose of this paper is to provide a reference for two theorems due to Marcel
Bokstedt.

Let K(Z) be the K-theory spectrum, and 7(Z) = THH(Z) the topological Hochschild
homology spectrum of the integers. We write K;(7) = m,K(Z) and T(Z) = n;T(Z).
The trace map tr: K(Z) — T(Z) is the map constructed by Bokstedt in [1], which
strengthens the Dennis trace map to ordinary Hochschild homology. By the calculations
of [2], reproduced in [7], To(Z) = Z and Tp;—1(Z) = Z/i for all i € N, while the
remaining groups are Zzero.
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Theorem 1.1 (Bokstedt). Let p be any prime. The trace map induces a surjection
Top—1(tr): Kop((Z) — Ty (Z)= Z/p
onto the first p-torsion in Tx(Z).

Bokstedt’s proof appears in an unpublished Bielefeld preprint [3]. Another proof is
given in Section 10 of [5], but that proof apparently assumes p is odd. We give a
proof in Section 2, taking special care to cover the case p=2.

The topological Hochschild homology spectrum admits the structure of an S!-
spectrum, and there is a compatible family of factorizations of tr

K@) =5 1(D)P CT(@),

for a fixed prime p and for all n>0. Hence C,» is the cyclic subgroup of $' with p"
elements. See [4] or [7] for more on this and the following material. These factoriza-
tions, composed with the standard maps

I': T(Z)% — T(Z
from fixed points to homotopy fixed points, induce a map of homotopy limits
K(Z) — holim T(Z)% — holim T(Z )
After p-adic completion (denoted in this paper by a subscript p) there is a natural
homotopy equivalence
T@Zys = holim T2
determining a map
trg: : K(2), — T@ZY*,

which we call the circle trace map. The cyclotomic trace map trc: K(Z), — TC(Z, p)
of [4] is a further refinement of this map.

There is a second quadrant spectral sequence Ef, with d": Ej, — E{_, .., , con-
verging to

e T(ZYS = 7,4 Map(ESL, T(Z))
and having
E2, = H(BS"; T(Z),). (1.2)

The spectral sequence arises from the skeleton filtration of a standard model for ES!,
a contractible space with a free action of S', and the cohomology groups arise as the
cohomology of the topological group S' acting on Tx(Z). Since S' is a path-connected
group the action is trivial, and hence

B2 — T7(Z), when s <0 is even,
st 0 otherwise.
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The edge homomorphism
Tx T(Z);;SI — an* — Tx(Z),
is induced by the natural map
hS' 1 s 1 s~
I(Z), =Map(ES.,T(2)), — Map(S,,T(Z)), =T(Z),

given by restriction over any choice of S'-equivalent imbedding S. C ES!. This spectral
sequence may be derived from the spectral sequence of a tower of fibrations constructed
by Bousfield and Kan in [6, p. 258].

Hence Theorem 1.1 has the following corollary.

Corollary 1.3. Let p be any prime. There is a class Ay € Kyp—1(Z), such that
tri(Aop—1)Emep1 T (Z)’I',Sl is detected on a permanent cycle surviving to E* in bide-
gree (0,2p — 1) of the spectral sequence (12). When p = 2, the class 2 = I €
K3(Z), =2 7Z/16 is a generator.

The second theorem concerns the class a; € nzp_gQ(SO),, generating the first
p-torsion in the stable homotopy groups of spheres. When p =2 this is the stable
class of the Hopf map #: S* — S°.

Theorem 1.4 (Bokstedt). The composite
tl‘S| 1
oS, — K(D)p, = T2y

maps ay € ny-3Q(S°), to an element of 7t2p_3T(Z)’1',Sl which is detected on a per-
manent cycle which survives to E* in bidegree (—2,2p — 1) of the spectral sequence
(12).

We give a proof in Section 3.!

2. The trace map K(Z) — T(Z)

The proof of Theorem 1.1 depends on Waldhausen’s Corollary 3.7 of [8], and on
Bokstedt and Madsen’s Lemma 10.5 of [5].

Let F be a functor with smash product (FSP). See [1] or [4] for the definition of
this notion, and for the construction of the K-theory K(F') and topological Hochschild
homology T(F) of such a functor, together with the trace map tr: K(F) — T'(F).

Let F* be the underlying ring spectrum of F, associated to the prespectrum {F(S")},,
and let M{(F') be its zeroth space. moM;(F)= moF* is a ring, and GL,(F) C M,(F)

' thank Marcel Bokstedt for explaining these results, and many others, to me.
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is defined as the union of the components corresponding to units in meM,(F). Then
GL,(F) is an associative topological monoid. Let Fix) be the £ X k matrix FSP with

Fiy(X) = Map([k], [k] A F(X))

(based maps) where [k] = {0, 1,...,k}. Indeed, Tk Fyy 18 the k£ x k matrix algebra over
nxF*. Write M (F) = Mi(Fxy) and GL(F) = GL{(Fy)-

Let BGL,(F) and NYGL,(F) be the classifying space and the cyclic nerve
of GL4(F), respectively. There is a natural projection n: NYGLi(F) — BGLy(F),
with a (weak homotopy) section i: BGLi(F) — NYGLi(F). The K-theory K(F)
is constructed as a group completion of the topological monoid [],.,BGLi(F). Let
the cyclic K-theory K¥(F) be likewise constructed from the topological monoid
I_[kzo NYGLR(F).

There is a natural projection n: K (F) — K(F), with a section i: K(F) — K%(F).
The trace map tr: K(F) — T(F') factors though i by construction. A standard inclusion
GL|(F) — GLi(F) induces maps BGL(F) — K(F) and NYGL|(F) — K%(F),
compatible with the projections and sections 7 and i.

The composite

5: NYGL{(F) - KY(F) — T(F)
is given in simplicial degree g by
(fo,-- s Sfq) = foN--- A fo.

Here each f;: 8" — F(S™) is assumed to stabilize to a class in ngGL(F') C moM,(F)
as n; — oo, Clearly the map s may also be factorized as

NYGL|(F) — NYM(F) — T(F).

Let 4: Si A Mi(F) — T(F) be given by the S'-action on T(F) combined with
the inclusion of M,(F') as the zero-simplices 7T (F )y = hocolim, c ;Map(S”, F(S")) into
T(F). In simplicial degree g the map A identifies (Cgy 1)+ A Mi(F) with the maps

SoN - Afy: SN AS™ — F(S™)A--- AF(S™)

in T(F),; where all but one of the f; equal a unit map 1g»: S$" — F(8™). Here C,pq
is the cyclic group with (g + 1) elements, viewed as the g-simplices in a simplicial
model for S'.

Restricting A over S} A GL{(F) — S} A M(F) we get a factorization through
s: NY(GL,(F)) — T(F):

(Cg+1)+ A GL1(F) — N¥(GL1(F))q
T AL

with f in the ith position, for i € [¢]. Here 7,41 is a generator of Cg ;.



J. Rognes!Journal of Pure and Applied Algebra 125 (1998) 277-286 281

Hence we have the following commutative diagram, natural in F:

i

BGL,(F) NGL,(F) S, AGL,(F)
K(F) K“(F) T (F) . SIAM(F)

Let F be the identity FSP with F|(X) = X, and let F, be the Eilenberg-Mac Lane
FSP of the integers, with F5(S")=K(Z,n). There is a linearization morphism ¢ : F; —
F, of FSPs, inducing a mg-isomorphism on underlying ring spectra

£ F=8" - F =HZ

Let SG C G be the identity component and the homotopy units of Q(S°), respectively.
We have M|(F) ~ Q(S°), M\(F;) ~ 7, GL|(Fy) ~ G and GL(F;) ~ {*1} & Z/2.
We identify NYSG with the free loop space ABSG as usual. Consider the diagram of
homotopy fibers of maps induced by ¢ in the diagram above:

BSG — -+ ABSG ~— S!ASG
3 ~ Q2.0
¢ A
K(F,>F,) KY(F,>F) T(F,—>F,)<—— S!ASG

Here K(F; — F;) = hofib(¢: K(F,) — K(F,)), and so on.
The map ¢: F} — F3 is r = (2p — 3)-connected when localized at p. We need the
following two lemmas.

Lemma 2.2. Let F; be the identity FSP, and F, the Eilenberg—-Mac Lane FSP of the
integers, as above. Then

A: 84 ASGp) — T(F1 = F2)p)
is (2r + 1) = (4p — S)-connected.

Proof. Let Fyo(X) = hofib(¢: F1(X) — F»(X)) for all X. Then Fy is a F; — F)-
bimodule FSP. Let T(F;,Fy) be the topological Hochschild homology space of F;
with coefficients in Fy, as defined in Section 10 of [5]. T'(F,Fy) is the geometric
realization of a simplicial space with g-simplices

T(F,Fo)g = ho)colirr} Map(S™ A --- AS"™, Fo(S™)AS" A--- AS™).
(n;); € I9+

Here we are using the assumption that F is the identity FSP.



282 J. Rognes | Journal of Pure and Applied Algebra 125 (1998) 277-286

The inclusion of the zero-simplices
T(F\,Fo) = ho'clzgllim Map(S”, Fo(S™)) — T(Fi,Fy)
is a weak homotopy equivalence, because for » € N the map
QFo(S™) — Q" Q(Fo(S™))

is (n + 1)-connected. Thus, if we identify M;(Fy) with the zero-simplices T(Fy,Fy)o,
we obtain a homotopy equivalence

SG = Ml(Fo) — T(F],Fo).

In [5, p. 130-134], there is constructed a map S}r ANT(F\,Fy) — T(F; — F;), and it
is easy to see that there is a factorization of 1 as

S} AM(Fo) — Sy AT(F1,Fo) = T(Fy — F).

Lemma 10.5 of [5] states that the second map in this factorization is (2r)-connected,
and in fact their proof shows that the map is (2r + 1)-connected. (The map S} A
T(F\,Fy) — T(F; — F;) is the geometric realization of a map of simplicial spaces
which is a homotopy equivalence in simplicial degree zero, and (2r)-connected in all
other degrees. The results follows).

Thus 4 is the composite of a weak homotopy equivalence and a (27 + 1)-connected
map. This completes the proof of Lemma 2.2. [

Lemma 2.3. Let Fy and F, be as above. Localized at p,
Z/p if pis odd,

map=2(F1 = B2 = { 72922 if p=2

and likewise
Z/p if pis odd,

nzp_zABSG(p) = { Z/Z o Z/Z lf p= 2
Proof. The inclusion of the zero-simplices Q(S°) ~ T(F1)o — T(F1) is a homotopy
equivalence, so the map 7 : T(F) — T(F2) factors up to homotopy through the zero-
simplices Z ~ T(F;)y — T(F;). Thus ¢ induces an inessential map on connected
components, and s0 72,2 T(Fy — F2) = T, ((Z) 12 ,—20(S°).

The fiber sequence 2BSG — ABSG — BSG has a section, so 7, 24BSG =
ﬂzp_z.QBSG &) n'zp_zBSG. Now T[zp_3SG(p) & Z/p for all p, while n'zp_sz(p) =0
for p odd and 7,SG = 7Z/2. O

We return to the proof of the theorem. Consider the diagram of homotopy fibers
(2.1). We implicitly localize at the prime p. The map A is (4p—5) > (2p—2)-connected,
0 Ty,_2(4) is a surjection (in fact an isomorphism). Thus 75,_,(s) is a split surjection
of isomorphic finite groups, and therefore, injective. mp,_»(i) is a split injection, so the
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composite Z/p = 1y, 2BSG — m3, 2T (F1 — F3) is also injective, and is in particular
nonzero. Hence the relative trace map 7y, K(Fi — F2) — myp 2T(Fi — Fp) is
nonzero.

Now consider the following diagram, where the vertical maps are boundary maps in
the fiber sequences induced by ¢ : F; — F,, and the top horizontal map is the map
we wish to show induces a surjection on 7;,_;.

Qtr

QK(F,) QT(F,)

K(F\—F)— T(F—F))

By Waldhausen’s Corollary 3.7 of [8], the map QK(F,) — K(F| — F3) induces a
surjection on 7y,_,. Hence the composite QK (F,) — T(F; — F>) induces a nonzero
map on 7my,_, and it follows that

Map—2(Qtr) : mop 2 QK(F2) — map 2 QT(F2) 2 Z/p

is nonzero, and thus surjective. This completes the proof of Bokstedt’s
Theorem 1.1. [

3. The circle trace map

We now turmn to the proof of Theorem 1.4.

Let E = ES' be a contractible S'-space with free S'-action. We will use as a
concrete model for £ the (thin) geometric realization of the usual simplicial space
[q] — (S")7*!. Let £ be the corresponding thick realization, where the degenerate
simplices are not collapsed. There is a natural S'-homotopy equivalence E — E in-
duced by collapsing degenerate simplices. Let E®) and E%®) denote the respective k-
skeleta.

Then E® = E©® = §'. £ can be described as the quotient space

STUS! x St x 1)/ ~

with (go,91,0) ~ go and (go,g1,1) ~ g1. EV is the further quotient space where we
also identify (g,g,t) ~ g for all t € 1.

So E(1) is the equalizer of the two projection maps pr,,pr, : ' x§' — §'. The map
EM — EW identifies a diagonal torus to a circle by a projection map AS' x(1/él) — S*
onto the first factor. Here AS' C S' x S! is the diagonal circle.

We remark that E(D 22 §3 and the skeleton filtration E® c EM ... of E = ES!
agrees with the unit sphere filtration ! = S(C')C 8% = S(C?)C--- of S® = S(C®) =
ES'. Let Z.(X) = S(X,) = X4 A S".
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Lemma 3.1. There is a map of Puppe cofibration sequences

r —_
(S'x 8YH, —= . s! - ED -2, (S'x§h) —F—z 8
2
s! EY o 5(S'xS'AS") —2— 3, 8!

where a is homotopic to Z.(pr,) — 2.(pr,), and c is the suspension of the collapse
map (' x §1), — S' x SY/AS".

Proof. The diagram is induced by the skeleton-preserving map E — E. The claim about
a follows from making the obvious choice of homotopy inverse to the collapse map

EQucisl) S EVsLxz(stxsh). O

There is an S'-homeomorphism 4 : SL ASL — (S x S'), given by 4(g,s) = (g, gs),
which descends over ¢ to another S'-homeomorphism S1 A S! — (S! x S')/AS'.
Hence we can make compatible identifications

Map (SL,T(Z2))* = T(2),
Map (Z,(S' x S1), T(2))* = QAT(Z), (3.2)
Map (Z(S' x S'/ASY), T(Z))S = Q*T(2).

For example, an S'-map f : S! — T(Z) is identified with f(1)€T(Z).

Lemma 3.3. There is a map of Puppe fiber sequences

QI (2) QAT(Z) MapE®, 1))} ———— T(2)
Q1) T@) Map(E®. T(@)) ———T@)

where o is the looped difference of the adjoints to the circle action map u : S A
T(Z) — T(Z) and the trivial action map v : SL AT(Z) — T(Z). vy is the usual looped
inclusion QQT(Z)) — QAT(Z)).

Proof. We apply Map(—,T (Z))Sl to the map of Puppe cofibration sequences in
Lemma 3.1, and make the identification of (3.2). Then y is induced by the collapse
map S1 — S! taking 1, CS! to the base point. Finally, pr, corresponds under (3.2)
to the circle action map p, and pr, to the trivial action map v which forgets the
S! -factor. The lemma follows. [J
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We momentarily change to spectrum level notation. Recall the splitting from [2]

T(Z)~HZV \ T* 'HZ/i.
i>2
Here the inclusion of the zero-simplices 1 : HZ — T(Z) gives the map to the first
summand.

Let &+ = Hx«(HZ/p;Z/p) be the dual of the Steenrod algebra, with polynomial
generators (;);>1 and exterior generators (7;);>o when p is odd, and polynomial
generators ({;);>1 when p =2. Let y denote the canonical anti-involution on &«.
Then H«(HZ;Z/p) is the subalgebra of .o/x generated by (&;);>1 and (x7:);>1 when
p is odd, and by ({3, 7{2,%(3,... ) when p=2. For p odd, & €.9/5,, is dual to the
Steenrod pth power operation P', while for p =2 the class {? € &/, is dual to Sg°.
(We are following Milnor in writing {; rather than &; for the polynomial generators in
the case p =2, to better distinguish between the even and odd cases.)

Let X = Map (E(+1), T(Z ))*;,I be the p-completed mapping spectrum, and let X[0, co)
be its connective cover. From the bottom fibration sequence in Lemma 3.3 it is clear
that the first nonzero homotopy groups of X[0,00) are meX = 7 p»and mo, 3 X =7/p.

Lemma 3.4. The first k-invariant of the connective cover of Map (Eil), T (Z))f,l is the
Steenrod pth power operation

P :H7, -5 T@), L 27'1(@), — ¥ 2HZ/p

when p is odd, respectively, the Steenrod squaring operation Sq* : H 7, — ZIHI)2
when p = 2.

Proof. The maps p and v : SlL A T(Z) — T(Z) restrict over 1 : HZ — T{Z) to give
maps A and vo1: Si AHZ — T(Z), which agree on 1, AHZCS. A HZ. Their
difference thus extends over S' A HZ — T(Z), and induces the derivation

o:H«(HZ;Z/p) — Hx \(T(Z2); Z/ p)

given by o(x) = Ax([S'] ® x), where [S'] € H\(S};Z/p) is the fundamental class.

By the calculations of [2], ¢ maps ) € Hyp_2(HZ;Z/p) to the spherical element
exp—1 € Hyp((T(Z); Z/ p) for p odd, while ¢ maps (? € H,(HZ;Z/2) to the spherical
element e; € Hy(T(Z);Z/2) when p=2. So the k-invariant HZ, — I*~2HZ/p maps
& or  to the fundamental class of X%~2H7/p, and is therefore equal to the dual
cohomology operation, namely P! or Sq¢?, respectively. [

We may now prove Bokstedt’s Theorem 1.4. We return to space level notation (see
Fig. 1).

Here the vertical maps are part of the bottom fiber sequence of Lemma 3.3, and p
is given by restriction over the S*-inclusion E(+1) CE, = ES!. On the level of spectral
sequences, p induces the natural map from (1.2) to its two rightmost nonzero columns,
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QT@),
0 tryy hS! p
08, K@), 12y —2—x
tr
[{UAN
Fig. 1.
where s = 0 or s = —2. The resulting two-column spectral sequence is simply the long

exact homotopy sequence of the cited fiber sequence.

Recall that the first nonzero homotopy groups of Q(S°) p are T Q(S%) » = Z p and
nzp_3Q(S°)p =~ 7/p, and the first k-invariant is P' detecting «; in the odd primary
case, and Sq* detecting 7 in the case p = 2.

The composite Q(S%), — X[0,00) induces a m-isomorphism, and by Lemma 3.4
the first k-invariants of these spaces agree. Hence the induced map on connected com-
ponents induces a m;,_3-isomorphism, taking «; to the generator of 7y, 3X.

Thus, a; € nzp_3Q(S°) is detected in the rightmost two nonzero columns of the
spectral sequence (1.2), where the only nonzero summand in total degree 2p — 3 is
in bidegree (—2,2p — 1). Thus a generator in this bidegree is hit. This completes the
proof of Theorem 1.4. [
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